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SUMMARY
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these
factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic
glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity
interventions but also revealed the theoretical principles underlying these interventions. We introduce the
dynamical systems theory to capture two general means for promoting longevity—the creation of a stable
fixed point in the ‘‘healthy’’ state of the cell and the ‘‘dynamic stabilization’’ of the system around this healthy
state through environmental oscillations. Guided by the model, we investigate how both of these can be
experimentally realized by dynamically modulating environmental glucose levels. The results establish a
paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to ag-
ing processes in diverse cell types and organisms.
INTRODUCTION

Aging is driven by the accumulation of cellular and genetic dam-

age resulting from intertwined biological processes that are

intrinsic to the individual and that are influenced by environ-

mental factors.1–5 Novel approaches to reduce global healthcare

burdens of chronic diseases and aging ultimately demand

increased understanding of aging biology and the interactions

of the pillars of aging that include diverse yet deeply linked fac-

tors such as epigenetics, stress, metabolism, and others.1,6 Pre-

vious studies in model organisms have been focused on

measuring lifespan as a static endpoint assay and have identified

many genes, the deletion or overexpression of which affects the

lifespan.7–12 An emerging challenge is to understand how these

genes interact with one another and operate collectively to drive

the aging processes and determine the final lifespan. Because of

the intricacies of aging-related processes, traditional reduc-

tionist approaches cannot address the totality of such

complexity. Instead, new systems-level approaches that inte-

grate stochastic and nonlinear dynamic models with large

time-trace datasets are required.

To this end, we set out to quantify and model replicative aging

of the budding yeast Saccharomyces cerevisiae, a genetically

tractable model for aging of mitotic cell types in mammals,

such as stem cells. Using microfluidics coupled with time-lapse

microscopy,13,14 we quantitatively tracked the aging processes
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in a large number of single yeast cells and found that isogenic

cells age with two different types of phenotypic changes15–18:

about half of cells continuously produced daughters, with an

elongated morphology during later stages of life (designated as

‘‘mode 1’’ aging). In contrast, the other half produced small,

round daughter cells until death (designated as ‘‘mode 2’’ aging).

Mode 1 aging is driven by ribosomal DNA (rDNA) silencing loss,

resulting in dramatically enlarged and fragmented nucleoli, indi-

cating nucleolar decline.19 In contrast, mode 2 aging is driven by

heme depletion and mitochondrial deterioration.20

In yeast, the lysine deacetylase Sir2 mediates chromatin

silencing at rDNA to maintain the stability of this fragile genomic

locus and the integrity of the nucleolus.21–24 The heme-activated

protein (HAP) complex regulates the expression of genes impor-

tant for heme biogenesis and mitochondrial function.25 We pre-

viously identified a mutual inhibition circuit of Sir2 and HAP that

resembles a toggle switch tomediate the fate decision and diver-

gent progression toward mode 1 vs. mode 2 aging in single

cells.17 Guided by mathematical modeling of the endogenous

system, we genetically engineered the Sir2-HAP circuit to repro-

gram aging trajectories and promote longevity.17,26 These

studies revealed the design principles of genetic circuits for pro-

moting cellular longevity under a static environmental condition.

However, how environmental fluctuations impact the dynamical

behaviors of genetic circuits to regulate the aging process re-

mains largely unclear.
s). Published by Elsevier Inc.
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Distinct metabolic changes in mode 1 vs. mode 2 aging

(A–D) Dynamics of an ATP reporter (A, n = 116), Hxt3-mCherry (B, n = 119), Hxk1-GFP (C, n = 115), nuc. iRFP (D, n = 120) in mode 1 and mode 2 cells. Top left of

each panel: representative time-lapse images of single mode 1 and mode 2 cells. Mother cells are circled in yellow, and the replicative age of the mother cell is

(legend continued on next page)
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In this study, we used a mathematical modeling approach to

explore the possibility of rationally reprogramming aging by dy-

namic environmental inputs. A growing number of studies re-

vealed that metabolic alterations are a major hallmark of aging,

whereas modulating energy metabolism by environmental fac-

tors can dramatically influence the phenotypes and rates of ag-

ing.27–30 For example, caloric restriction (CR) can promote

longevity from yeast to mammals.31–37 Yet, a systematic, quan-

titative analysis of the impact of environmental factors on the

complex networks of aging remain largely missing, making

rational reprogramming of aging a challenging task.

Previous studies showed that both Sir2 and HAP are involved

in regulatingmetabolism. For example, Sir2 directly regulates the

transcription ofmultiplemetabolic genes at the sub-telomeric re-

gions.38 The HAP transcriptional complex is responsible for up-

regulation of respiratory genes and mitochondrial-related

genes.25,39 In addition, the environmental glucose level, which

modulates cellular metabolism, can also influence both Sir2

and HAP via different mechanisms. For instance, reduced

glucose can enhance the activity of Sir2, a nicotinamide adenine

dinucleotide (NAD)-dependent histone deacetylase, by influ-

encing NAD metabolism through multiple routes.40–44 The

expression levels of the HAP components were upregulated

upon glucose limiting conditions.45,46 In agreement with prior re-

sults, we found in this study that mode 1 and mode 2 aging,

driven by the Sir2-HAP circuit, are associated with distinct meta-

bolic shifts: mode 1 transitions from fermentation to respiration

while mode 2 shows increased glycolysis and decreased respi-

ration. We further tracked aging processes in single cells under

varying glucose conditions and developed a mathematical

model to investigate how environmental glucose alterations in-

fluence the dynamical behaviors of the core Sir2-HAP circuit

and cellular longevity. Based on single-cell data and dynamical

systems theory, we identified two general approaches to extend

lifespan by dynamically adjusting environmental glucose in-

puts—establishing a subtle balance (a stable fixed point) to sta-

bilize the healthy state of the cell and driving dynamic stabiliza-

tion of the system around this healthy state. Our model not

only provides valuable biological insights for designing strate-

gies to promote longevity but also uncovers the underlying theo-

retical principles behind these strategies, with broad applica-

tions across different cell types and organisms.

RESULTS

Metabolic divergence in isogenic aging cells
To determine how aging affects cellular energy production under

standard yeast growth conditions, we monitored cellular ATP

levels throughout the lifespans of single cells using a genetically

encoded fluorescent biosensor containing an ATP-binding

pocket linked with a circularly permutated GFP, the fluorescence

of which increases with the cellular ATP level.47 We observed a

gradual decline in cellular ATP levels in mode 2, but not mode
shown at the top left corner of each image. Scale bars, 2 mm. Bottom left of each

represents the time trace of a single cell throughout its lifespan. Color represent

average fluorescence time traces throughout the life spans in mode 1 and mode

(E) Effects of metabolic gene perturbations on the fate decision in yeast aging. P

mutants tested. O/E, overexpression.
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1 aging cells (Figure 1A; see STAR Methods and Figure S1 for

mode 1 vs. mode 2 classification). To determine the metabolic

processes underlying this difference in ATP production among

aging cells, wemonitored the levels of metabolic factors involved

in energy production, such as glycolysis and respiration, and

compared their dynamics between mode 1 and mode 2 cells.

We first examined changes in glycolysis during aging by

tracking the expression of glucose transporters,48 a glycolytic

enzyme,49 and the fluorescence of a fructose-1,6-phosphate

(FBP) glycolytic flux biosensor.50 The three glucose transporters

we evaluated (Hxt1, Hxt2, and Hxt3) all showed much more

dramatically increased expression in mode 2 aging compared

with the changes in mode 1 aging (Figures 1B, S2A, and S2B),

indicating that a marked elevation in glycolysis occurs specif-

ically during mode 2 aging. Consistent with this observation,

the expression of the glycolytic enzyme Hxk1 also increased

in mode 2 but not in mode 1 aging (Figure 1C). Moreover,

mode 2 aging cells showed a more dramatic increase in the

fluorescence of the glycolytic flux biosensor than mode 1 cells

(Figure S2C). Heme abundance is an indicator of mitochondrial

biogenesis and cellular respiration.25,51 Using a nuclear-

anchored infrared fluorescent protein (nuc. iRFP),17,52 we

tracked heme abundance in single aging cells. The iRFP fluores-

cence depends on a heme degradation product, biliverdin, and

thereby correlates with cellular heme levels.17 We observed

that it gradually elevated in mode 1 aging, but dropped sharply

in mode 2 aging (Figure 1D). Together, these results indicated

that mode 1 aging features an age-induced transition from

fermentation to respiration, in agreement with a previous

report,53 whereas mode 2 aging elicits enhanced glycolysis

but suppression of respiration, resulting in a decline in ATP

production.

We next asked whether the observed metabolic changes

contribute to driving the divergence in mode 1 and mode 2 aging

or whether they are simply the consequences of different aging

routes. We genetically perturbed the glycolysis or respiration

pathway and examined the effects on the fate decision in an

isogenic aging population (Figure 1E). We observed that overex-

pression of the glucose transporter Hxt1 or the glucose sensor

Snf3, both of which elevate glucose uptake and glycolysis,48

promoted mode 2 aging, whereas deletion of Snf3 promoted

mode 1 aging. In addition, overexpression of Hap4, which is a

major component of the HAP complex (the master transcrip-

tional activator of yeast respiration),51,54 largely promoted

mode 1 aging, whereas deletion of Hap4 promoted mode 2 ag-

ing, as previously reported.17 These results demonstrate that

metabolic alterations actively regulate the fate decision of sin-

gle-cell aging—enhancing respiration or reducing glycolysis pro-

motes mode 1 aging, whereas elevating glycolysis or reducing

respiration promotes mode 2 aging.

Taken together, these results demonstrated the interactions

between glucose metabolism and the fate decision of aging

cells. Based on these findings, we next investigated how
panel: single-cell color map trajectories in mode 1 and mode 2 cells. Each row

s the fluorescence intensity as indicated in the color bar. Right of each panel:

2 cells.

ie charts show the percentages of mode 1 (red) and mode 2 (blue) in WT and



Figure 2. The effects of glucose levels on aging and lifespan

(A) The percentage of mode 1 cells in an aging population as a function of glucose concentration, determined experimentally.

(B) The average lifespans of mode 1 and mode 2 cells as a function of glucose concentration, determined experimentally.

(C) The average lifespan of a whole aging population as a function of the glucose level, determined experimentally. Lifespan curves and statistical analysis are

shown in Figure S4.

(D) Single-cell color map trajectories of rDNA-GFP (left) and nuclear-anchored iRFP (right) during aging under different glucose levels, determined experimentally

(2% glucose: n = 91; 0.1% glucose: n = 80; 0.02% glucose: n = 100). Each row represents the time trace of a single cell throughout its life span. Color represents

the fluorescence intensity as indicated in the color bar. Color maps for rDNA-GFP and nuc. iRFP are from the same cells with the same vertical order. For each

glucose level, cells are classified into mode 1 and mode 2 based on their aging phenotypes. Mode 1 cells were further classified into subpopulations based on

(legend continued on next page)
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alterations in environmental glucose level, which modulate en-

ergy metabolism processes, could influence the fate decision

in aging cells and the lifespan.

An optimal level of CR for lifespan extension
Environmental glucose levels can modulate metabolic pro-

cesses, such as glycolysis and respiration.55,56 To systematically

determine how alterations in glucose levels influence the fate de-

cision in aging and the cellular lifespan, we switched the cell

growth medium from the standard 2% glucose condition to

different glucose levels at the beginning of aging and tracked

the lifespans of single cells (Figure 2; STAR Methods).

We observed that changing glucose levels dramatically

affected the fate decision in aging, with decreased glucose pro-

moted mode 1 aging, whereas increased glucose promoted

mode 2 aging; the glucose level negatively correlated with the

proportions of mode 1 vs. mode 2 in an aging population (Fig-

ure 2A). However, the average lifespans within mode 1 and

mode 2 aging cells remained relatively unchanged (Figure 2B).

The exception was with 0.1% glucose, which markedly

extended the lifespans of both mode 1 and mode 2 aging cells.

Further decreasing the glucose level to 0.02%, however, largely

shortened the lifespan of mode 1 cells (>90% of the population).

We confirmed that, in the microfluidic device, the cell cycle rate

under 0.02% glucose was comparable to that under the stan-

dard 2% glucose condition, suggesting that 0.02% glucose

was sufficient to maintain normal cell growth and physiology;

thus, the lifespan shortening under 0.02% glucose was not due

to the adverse effects of extreme starvation on cell physiology

(Figure S3). Hence, 0.1% glucose appeared to be an optimal

level of CR that maximally extended the lifespan in yeast (Fig-

ure 2C; lifespan curves and t tests are included in Figure S4).

To further define the lifespan-extending effect of the optimal

CR conditions, we monitored rDNA silencing loss and heme

depletion, two major age-induced deterioration processes that

regulate lifespan.17,26 To track rDNA silencing, we used a GFP

reporter inserted within the rDNA (rDNA-GFP).15 Because

expression of the reporter is subject to silencing, increased re-

porter fluorescence indicates reduced silencing, whereas

decreased fluorescence indicates enhanced silencing. To track

heme biogenesis, we used a nuclear-anchored iRFP reporter

(nuc. iRFP).52 We observed that, under the standard 2% glucose

condition, about half of cells were committed to mode 1 aging

that ended life in a state with continuous low rDNA silencing

(as indicated by high rDNA-GFP signal) and high-heme biogen-

esis (as indicated by high iRFP signal), whereas the other half

were committed to mode 2 aging and ended life in a state with

low heme abundance and high rDNA silencing(Figure 2D, top),

consistent with previous reports.17,26

In contrast, at 0.1% glucose, the majority (82%) of cells ex-

hibited mode 1 aging. Among these mode 1 cells, 64% showed

a substantial time delay preceding fate commitment to the high-

heme, low-silencing state (‘‘delayed mode 1’’ subpopulation in

Figures 2D, middle, and S5 for quantifying the time preceding
their iRFP dynamics using the changepoints detection method and the time pre

Figure S5. Different subpopulations were separated by black dashed lines.

(E) Histograms showing the distributions of the time preceding fate commitment

742 Cell Systems 15, 738–752, August 21, 2024
fate commitment using changepoint detection57,58), compared

with mode 1 cells at 2% glucose (Figure 2E, top). Moreover,

the rest (36%) of cells maintained intermediate levels of heme

and silencing without a prolonged fate commitment throughout

the lifespan and are longer lived (‘‘stabilized’’ subpopulation in

Figure 2D, middle). Decreasing the glucose level to 0.02%

further increased the proportion of mode 1 aging cells (91%).

However, we observed a wide distribution of fate commitment

time, with some cells reaching the high-heme, low-silencing

state very early in life (Figures 2D, bottom and 2E, bottom). In

addition, the proportion of stabilized subpopulation was largely

diminished under this condition. These differences in fate deci-

sion dynamics between aging cells under 0.1% and 0.02%

glucose are in accord with their lifespan difference (Figure 2C).

Together, our results suggest that the maximal lifespan exten-

sion under 0.1% glucose could be attributed, at least partially,

to the delayed fate commitment to the ‘‘aged’’ states.

The emergence of a longevity fixed point by CR
To quantitatively analyze mechanisms underlying the emer-

gence of an optimal CR condition, we expanded a recently pro-

posed model comprising the mutual inhibition circuit of Sir2 and

HAP that resembles a toggle switch to drive the fate decision in

yeast aging.17 Previous studies revealed that CR can elevate the

levels of both Sir2 and HAP in yeast.40–42,45,46 To incorporate

these effects in the model, the total amounts of Sir2 and

HAP were considered as the functions of the glucose level

(Figures 3A and 3B). Thus:

dS

dt
=

�
b1 +

Sn1

KS
n1+Sn1

�
ðStotalðDÞ � SÞ � ðdS + g1$HÞS

(Equation 1)

dH

dt
=

�
b2 +

Hn2

KH
n2+Hn2

�
ðHtotalðDÞ � HÞ � ðdH + g2$SÞH

(Equation 2)

Here, S, H are concentrations of active Sir2 and HAP, respec-

tively; b1, b2 are basal activation factors of Sir2 and HAP; KS,

KH are half-activation constants of Sir2 and HAP; dS, dH are

degradation rates of Sir2 and HAP; g1, g2 are repression strength

of HAP and Sir2; and n1, n2 are Hill coefficients for Sir2 and HAP

autoregulation. Total amounts of Sir2 and HAP are defined as the

functions of glucose concentration D:

StotalðDÞ = aSt
KSt

3

KSt
3+D3

+ kStD+bSt (Equation 3)

HtotalðDÞ = aHt
KHt

3

KHt
3+D3

+ kHtD+bHt (Equation 4)

The parameters of the model were estimated by fitting the

simulations with the data on the ratios of mode 1 vs. mode 2 un-

der different glucose conditions (Figure S6; Table S1). These
ceding fate commitment was quantified for each mode 1 cell, as illustrated in

among mode 1 cells at different glucose concentrations.



Figure 3. Computational modeling unravels the stability changes of the Sir2-HAP circuit under different glucose levels

(A) Diagram of the circuit topology.

(B) Equations of the model. S is the concentration of enzymatically active Sir2, H is the concentration of active HAP complex, and D is the concentration of

glucose. Stotal and Htotal are piecewise functions of D, representing the total concentration of Sir2 and HAP, respectively (see STAR Methods for details).

(C) Phase planes demonstrate the stability changes of the Sir2-HAP circuit under different glucose levels. The nullclines of Sir2 and HAP are represented in blue

and red, respectively. The arrows represent the rate and direction of the system’s movement. Fixed points are indicated with open (unstable) and closed (stable)

circles. The stable fixed point at the top left corner of each phase plane corresponds to the terminal state of mode 1 aging and the one at the bottom right corner

corresponds to the terminal state of mode 2 aging. At 0.1% glucose, a third stable fixed point (longevity fixed point) emerges with intermediate levels of Sir2

and HAP.

(D) Stochastic simulations of aging trajectories on the Sir2-HAP phase planes under different glucose levels. The initial points of each trajectory (purple, n = 10)

were randomly generated based on the Gaussian distribution for simulation. Trajectories were numerically calculated by the stochastic version of equations

from (B).

(E) Stochastic simulations of the Sir2 and HAP time traces during aging under different glucose levels. The initial points (n = 200) were randomly generated based

on the Gaussian distribution for simulation. Red and blue curves represent the time traces of mode 1 and mode 2 cells, respectively.

(legend continued on next page)
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equations were chosen based on the experimental observation

that the mode 1 ratio exhibited a switch-like drop from 0.02%

to 1% glucose (best described by a Hill function ½a K3

k3+D3]), fol-

lowed by a slower gradual decline from 1% to 5% glucose

(described by a linear function ½kD +b]) (Figure S6).

To study the stochastic dynamics of aging, we used the

following Langevin equations by adding noise terms to the deter-

ministic equations:

dS

dt
=

�
b1 +

Sn1

KS
n1+Sn1

�
ðStotalðDÞ � SÞ � ðdS + g1$HÞS+SxS

(Equation 5)

dH

dt
=

�
b2 +

Hn2

KH
n2+Hn2

�
ðHtotalðDÞ � HÞ

� ðdH + g2$SÞH+HxH

(Equation 6)

The noise terms xS, xH are uncorrelated white Gaussian pro-

cesses with zero mean and autocorrelation CxiðtÞxiðt0ÞD =

eidðt � t0Þ; i˛ fH; Sg, where dðt � t0Þ is Dirac’s delta function

and ei is the magnitude of i.

The effects of glucose levels on the dynamics of Sir2 and HAP

can be analyzed graphically by plotting the nullclines and vector

field in a Sir2-HAP phase plane under different concentrations of

glucose (Figures 3C and 3D; Video S1). With the standard 2%

glucose level, the system has two stable fixed points—the low

Sir2, high HAP point that corresponds to the terminal state of

mode 1 aging and the high Sir2, low HAP point that corresponds

to the terminal state of mode 2 aging (Figures 3C and 3D, top).

Stochastic simulations showed that roughly equal numbers of

cells progressed toward either of these two steady states during

aging (Figure 3E, top). When the glucose concentration de-

creases, an unstable fixed point between the two stable fixed

points moves toward the high Sir2, low HAP region, biasing the

fate decision toward the low Sir2, high HAP state and thereby

mode 1 aging (Video S1). This is consistent with our experimental

observations that decreasing glucose level increased the pro-

portion of mode 1 cells in an aging population (data in Figure 2A).

When the glucose concentration reaches around 0.1%, a third

stable fixed point emerges in the intermediate Sir2, intermediate

HAP region of the phase plane (Figures 3C and 3D, middle). Sto-

chastic simulations showed that a fraction of cells fluctuated

around this new stable fixed point for a period of time before

eventually deviating to the low Sir2, high HAP or high Sir2, low

HAP states, driven by the noise (Figure 3E, middle). This is

consistent with our experimental observations of the delayed

mode 1 and stabilized subpopulations of aging cells under the

optimal 0.1% glucose condition (simulations in Figure 3E, middle

vs. data in Figures 2D middle and 2E, top). This new stable fixed

point requires a subtle balance between Sir2 andHAP and hence

disappears quickly when the glucose concentration is further

decreased (Figures 3C and 3D, bottom). As a result, at 0.02%

glucose, the majority of cells aged with mode 1 aging and ap-
(F) Simulated time traces of damage accumulation based on Sir2 and HAP dyna

arbitrary threshold (horizontal line).

(G) Simulated lifetime as a function of the glucose concentration. Simulations were

bars represent the mean value and standard deviation of simulated lifetimes, res
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proached the low Sir2, high HAP state with a wide distribution

of commitment time (Figure 3E, bottom). This is consistent with

our experimental results of fate commitment dynamics under

this condition (simulations in Figure 3E, bottom vs. data in

Figures 2D, bottom and 2E, bottom).

To simulate the effects of glucose alterations on lifespan, we

linked the Sir2-HAP circuit to cell death using a paradigmatic

model framework, recently developed by Uri Alon’s group,59,60

in which the aging process is described as a competition be-

tween accelerating damage accumulation and saturating dam-

age removal. The cell death occurs when the level of intracellular

damage exceeds a certain threshold value. In our model, we as-

sume that the damage removal rate is dependent on the levels of

Sir2 and Hap4. Specifically, the equation for the damage j is

written as follows:

dj

dt
= ht � S2

S2+K1
2

H2

H2+K2
2
j+jxj (Equation 7)

Here, h is the production rate of damage and xj is the Gaussian

white noise term with strength ej. Initial conditions for

Sir2 and HAP follow a Gaussian probability distribution

ð2psSsHÞ� 1 exp
h
� ðS�S0Þ2

s2
S

� ðH�H0Þ2
s2
H

i
(see Table S1 for the pa-

rameters of simulations).

Decreasing either Sir2 or HAP levels reduces damage repair/

removal and thereby accelerates damage accumulation. The

lifetime of a cell is calculated as the time taken for its damage

level to hit the threshold (Figure 3F). Because the cell’s lifetime

and replicative lifespan are positively correlated in general, for

the sake of simplicity, our model uses this simulated lifetime as

a proxy for lifespan. We also confirmed that the conclusions of

our modeling results are not sensitive to the choice of the dam-

age threshold (STAR Methods and Figure S7).

The optimal CR condition allows for the system to spend an

extended period near the new stable fixed point with intermedi-

ate Sir2 and HAP levels and, hence, to slow damage accumula-

tion, leading to the maximally extended lifespan across different

glucose levels (simulations in Figure 3G vs. data in Figure 2C).

We therefore designated this stable fixed point as a longevity

fixed point. Notably, the emergence of the intermediate stable

fixed point (the longevity fixed point in this study) is a well-estab-

lished, robust feature for the toggle switch network (Equations 1

and 2; mutual inhibition + autoregulation),17,61–63 whereas the

dependence of Sir2 and HAP on glucose level (Equations 3

and 4) is sensitive to parameter choices and is constrained by

the data fitting (Figure S6). Further parameter analysis and a dis-

cussion of the robustness of the model were included in Fig-

ure S8 and in STAR Methods.

Sir2 overexpression can stabilize the longevity
fixed point
To determine the dependence of the longevity fixed point on

glucose concentration, we performed a bifurcation analysis of
mics in (E). The cell is considered ‘‘dead’’ once its damage level exceeds the

performed 5 times with 100 cells for each simulation. The black dots and error

pectively.



Figure 4. Sir2 overexpression stabilizes the longevity fixed point

(A and B) Modeling analysis of the dependence of the longevity fixed point on the glucose level in WT and 2 3 Sir2.

(A and B) Left, Bifurcation analysis for the stability of the Sir2-HAP circuit as a function of the glucose level. Black lines and gray lines represent stable and unstable

fixed points, respectively. The range of glucose levels in which the longevity fixed point exists is shaded in blue.

(A and B) Right, the dependence of the longevity fixed point on the total amounts of Sir2 (Stotal) and HAP (Htotal). The glucose level can affect the values of Stotal and

Htotal, which is depicted by the red line. The blue region represents the area where the longevity fixed point exists in the parameter space.

(legend continued on next page)
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our model and showed that, in the wild-type (WT) system, the

longevity fixed point emerges within a narrow range of glucose

levels into which the optimal CR falls (Figure 4A, left). Accord-

ingly, in the Sir2-HAP parameter space, the longevity fixed point

exists within a triangular region and the trajectory depicting

glucose level changes passes across only the tip of that region

(Figure 4A, right).

Our previous analysis of the Sir2-HAP model revealed that

2-fold overexpression of Sir2 can also create the longevity fixed

point under standard growth conditions (corresponding to long-

lived mode 3 aging).17 We therefore examined how Sir2 overex-

pression can alter the dependence of this fixed point on glucose

levels. Our model predicted that increasing Sir2 abundance by

2-fold (see STAR Methods) can reshape the phase diagram of

the system so that the longevity fixed point can exist within a

much wider range of glucose levels and a larger region of the

Sir2-HAP parameter space (Figure 4B).

In addition, because the two flanking unstable fixed points are

moved further away from the longevity fixed point by Sir2 over-

expression, the system becomes less likely to deviate to the

other two ‘‘aged’’ stable fixed points by the noise (Figures 4C

and 4D), which could lead to longer lifespans under awider range

of glucose levels compared with that of WT cells under the

optimal CR condition. Changing the glucose level can still modu-

late the distances between the longevity fixed point and the two

flanking unstable fixed points and thereby can influence the

probability of deviating to the mode 1 or mode 2 aged state:

2% glucose biased the system toward deviation to the high

Sir2, low HAP state and thereby cells have a higher chance to

escape from the longevity fixed point and undergo mode 2 aging

(Figures 4C and 4D, top), whereas 0.02% glucose biased the

system toward the low Sir2, high HAP state and cells have a

higher chance to escape to mode 1 aging (Figures 4C and 4D,

bottom); 0.1% glucose remained the optimally balanced condi-

tion with the least chance of deviations (Figures 4C and 4D,

middle).

To test these predictions experimentally, we overexpressed

Sir2 by 2-fold and monitored cell aging under different

glucose concentrations. In line with a previous study,17 over-

expression of Sir2 dramatically enhances rDNA silencing.

Consistent with the model, we also observed substantially de-

layed rDNA silencing loss and heme elevation during aging of

a large fraction of cells under the tested glucose concentra-

tions (0.02%–3%) (Figure 4E), which indicated a more stable

rDNA silencing state and thereby longer lifespans than those

of WT cells over a wide range of glucose levels (Figure 4F; life-

span curves and t tests are included in Figure S9). These re-

sults are in accord with a more stable longevity fixed point

in the 2 3 Sir2 system. In addition, glucose levels can indeed

affect the fate decision (Figure 4E) and lifespan (Figure 4F) in

the 2 3 Sir2 system, consistent with model simulations

(Figure 4D).
(C) The Sir2-HAP phase planes for 2 3 Sir2 under different glucose levels from m

(D) Stochastic simulations of aging trajectories on the Sir2-HAP phase planes fo

(E) Experimental data for the dynamics of rDNA-GFP and iRFP during aging. Single

2-fold overexpression of SIR2 under different glucose conditions are shown (2%

(F) The experimentally measured lifespans of WT vs. 23 Sir2 as a function of the g

3% glucose: n = 67; 5% glucose: n = 78).
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External glucose oscillations can enable dynamic
stabilization of the aging process
We recently engineered a synthetic Sir2-HAP gene oscillator that

could slow cell deterioration, resulting in a dramatically extended

lifespan.26 In this study we considered the possibility that oscil-

latory glucose inputs may be able to drive dynamic stabilization

of the Sir2-HAP circuit and thereby promote longevity. For

example, in our model, the system does not have the longevity

fixed point at either 2% or 0.02% glucose levels and is unstable

in the intermediate Sir2, intermediate HAP range. However, os-

cillations between 0.02% and 2% glucose levels may be able

to restrict the system to that region, reaching a state of dynamic

stabilization.

To test this possibility in silico, we first performed stochastic

simulations with external glucose oscillations between 0.02%

and 2%. We found that at least a fraction of cells indeed

remain within the intermediate Sir2, intermediate HAP state for

an extended period before escaping to the low Sir2 or low HAP

states (Figures 5A–5C; Video S2; see STAR Methods and Fig-

ure S10 for defining dynamically stabilized [DS] cells from simu-

lations). With increasing input frequency, the proportion of cells

that exhibit such a delay increases quickly and then comes to

saturation (Figure 5D).

To test these computational predictions experimentally, we in-

tegrated our microfluidic device with a computer-controlled

electrovalve64–67 to deliver dynamic patterns of environmental

inputs into the culture chambers. We applied external glucose

oscillations between 0.02% and 2% over a 6-h period

throughout the lifespans of yeast cells and tracked their aging

processes. In addition to mode 1 and mode 2 aging cells, we

observed that about one-third of cells showed fluctuating

rDNA-GFP and iRFP signals for a long period of time before devi-

ating to the low HAP state (Figure 5E). These cells corresponded

to the fraction of cells with dynamic stability in our model simu-

lations (Figure 5A, purple curves). We hence designated them

as DS cells (see STARMethods and Figure S11 for the classifica-

tion of DS cells). These DS cells exhibited waves of rDNA-GFP

and iRFP signals driven by glucose inputs and turned out to be

very long lived, with an average lifespan of 31 generations,

much longer than that of mode 1 or mode 2 cells from the

same aging population (Figures 5F and S12, cell cycle lengths

for different modes). This DS subpopulation led to a much longer

maximal lifespan under glucose oscillations compared with the

constant 0.1% glucose condition (55 vs. 45 generations), while

the mean lifespan of the whole aging cell population was slightly

shorter (24 vs. 26 generations) (Figure S13). We further tested

glucose oscillations with an input period of 1, 12, and 24 h.

Consistent with the model simulations, increasing input fre-

quency increased the proportion of mode DS cells in an aging

population and then the effect reached saturation—reducing

the oscillatory period to 1 h modestly affected the proportion

of mode DS cells compared with the 6-h period (simulations in
odel simulations.

r 2 3 Sir2 under different glucose levels.

-cell color map trajectories of rDNA-GFP (left) and nuc. iRFP (right) for cells with

glucose: n = 53; 0.1% glucose: n = 50; 0.02% glucose: n = 41).

lucose level (0.02% glucose: n = 45; 0.1% glucose: n = 56; 2% glucose: n = 59;



Figure 5. External glucose oscillations enable dynamic stabilization of the aging process

(A) Stochastic simulations of the Sir2 and HAP time traces during aging under glucose oscillations between 0.02% and 2%, with a 6-h period (n = 200).

Dynamically stabilized (DS) cells were defined as those that continue to fluctuate around the intermediate Sir2 and HAP state for an extended period before

deviation to mode 1 or mode 2 (see STAR Methods). The time traces of DS cells are shown in purple.

(B) Simulated time traces of damage accumulation based on Sir2 and HAP dynamics in (A). The cell is considered dead when its damage level exceeds the

arbitrary threshold (horizontal line).

(C) Stability of aging trajectories upon glucose oscillations vs. constant glucose levels. Stochastic simulations were performed in a Sir2-HAP plane of 2003 200

grids, and the average retention probability in each grid was computed, as indicated by the color bar.

(D) The percentage of DS cells in an aging population as a function of the period of glucose oscillations, from model simulations.

(E) Experimental data for the dynamics of rDNA-GFP and iRFP during aging. Single-cell color map trajectories of rDNA-GFP (left) and nuc. iRFP (right) during aging

under glucose oscillations between 0.02% and 2% with a period of 6 h (n = 84) are shown. Each row represents the time trace of a single cell throughout its life

span. Color represents the fluorescence intensity as indicated in the color bar. Color maps for rDNA-GFP and nuc. iRFP are from the same cells with the same

vertical order. Experiments were repeated independently at least twice. All the cells are classified into mode 1 (top), mode 2 (middle), and DS (bottom), based on

TSkmeans algorithm with dynamic time warping (DTW) for clustering (STAR Methods and Figure S11).

(F) Lifespan curves of mode 1, mode 2, and DS cells (n = 84), determined experimentally.

(G) The percentage of DS cells in an aging population as a function of the period of glucose oscillations, determined by experiments (The number of cells analyzed

in each group: 1 h, n = 62; 6 h, n = 84; 12 h, n = 84; 24 h, n = 94.).
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Figure 5D vs. data in Figures 5G and S14, single-cell aging tra-

jectories upon glucose oscillation with a 1-h period).

Taken together, these results validated our modeling results

and demonstrated that external glucose oscillations can indeed

enable dynamic stabilization of aging processes, leading to a

prolonged lifespan.

DISCUSSION

In this study, using microfluidics and time-lapse microscopy, we

tracked the aging trajectories of single yeast cells upon environ-

mental glucose alterations and made several interesting find-

ings: (1) the divergent aging trajectories of single cells are asso-

ciatedwith distinct metabolic changes—mode 1 aging features a

transition from fermentation to respiration, whereas mode 2 ag-

ing features enhanced glycolysis and suppressed respiration. (2)

Alterations in environmental glucose concentration can modu-

late cellular metabolism and thereby influence the fate decision

of aging—decreased glucose level leads to a higher ratio of

mode 1 vs.mode 2 cells in an aging population, while the lifespan

of eachmode remains relatively unchanged, with an exception at

0.1% glucose. As glucose alterations were applied after the cells

started aging in the microfluidics device, these results indicate

that the fate of a young cell is not pre-determined and can be

controlled by environmental cues during the early phase of ag-

ing, excluding the possibility that mode 2 cells are originated

from the pre-existing rho0 cells that lack mitochondrial DNA in

the initial cell population. (3) External glucose oscillations lead

to a new long-lived mode of aging process in a fraction of cells.

From the theoretical perspective, we devised a simple mathe-

matical model that can not only reproduce the single-cell aging

data under variable glucose conditions but also shed light on

the underlying biological mechanisms governing the metabolic

regulation of aging. Notably, the model has predictive power

that can be used to guide the design of interventional strategies

for longevity and to reveal the theoretical principles underlying

these strategies. In particular, we focused on the Sir2-HAP tog-

gle switch circuit that mediates the progression of two major ag-

ing paths in single yeast cells—one leads to a low Sir2, high HAP

state, resulting in nucleolar decline, and the other leads to a high

Sir2, low HAP state, causing mitochondrial deterioration (Fig-

ure 3).17 Because both of these terminal states of aging are asso-

ciated with markedly accelerated damage accumulation, the

overall goal for pro-longevity interventions is to avoid, or at least

delay, the fate commitment and progression toward these two

detrimental steady states (stable fixed points) of the natural ag-

ing system. This is challenging in that interventions that elevate

either the end of the toggle, Sir2, or HAP will simply push the

cell to the other path toward aging and death.

Our model-based analysis here unraveled two general ap-

proaches to promote longevity: (1) create and stabilize a

longevity fixed point in the healthy intermediate Sir2 and HAP re-

gion and (2) enable dynamic stabilization of the system around

the healthy state. Both can be realized by modulating environ-

mental glucose levels.

For the first approach, the longevity fixed point, which

achieves a subtle balance between Sir2 and HAP at intermediate

levels, can be stabilized by either an optimal level of CR or mod-

erate overexpression of Sir2. Both interventions enable the cell
748 Cell Systems 15, 738–752, August 21, 2024
to maintain a state with intermediate levels of Sir2 and HAP for

an extended period of time. Among them, genetic manipulation

of Sir2 leads to a fixed point that is less sensitive to environ-

mental glucose alterations (Figure 4B). Intriguingly, however,

although both Sir2 overexpression and CR can delay rDNA

silencing loss during aging, their effects on lifespan can still be

additive (Figure 4F), suggesting additional mechanisms medi-

ating the effects of CR. In our study, the glucose level, by acting

on HAP in addition to Sir2, can modulate the stability of the

longevity fixed point generated by Sir2 overexpression and

thereby influence the lifespan (Figure 4D). As an immediate appli-

cation, our model can be used to design the combined treat-

ments with CR and pharmacological activators of sirtuins in

which in silico simulations could help refine the optimal dosage

combinations for maximizing the effects on lifespan extension.

For the second approach, inspired by the nonlinear dynamics

and control theory, we adopted the concept of dynamic stabili-

zation for designing pro-longevity strategies. Indeed, an unsta-

ble state of a dynamical system, such as the natural aging circuit

with intermediate levels of Sir2 and HAP, can be stabilized by

applying periodic oscillations of external glucose levels at certain

frequencies (Figures 5A and 5B). In a more general sense, in sil-

ico simulations suggest that swiftly alternating between any pair

of inputs whose geometric midpoint resides within the ‘‘longevity

region’’ can induce dynamic stabilization. This does not require

the presence of a longevity fixed point under static glucose con-

ditions (Figure S15). This implies that, in theory, oscillatory pulses

between two glucose levels can stabilize the system in a healthy,

long-lived state, whereas the static inputs of either glucose level

cannot (Figure 5C). Although our experimental results supported

this theory (Figure5E–5G), more comprehensive experimental

validations will be needed to further test this idea in a more sys-

tematic fashion. It is also interesting to note that this method of

dynamical stabilization is reminiscent of the stabilization of an in-

verted pendulum by periodic vibrations of its pivot point—the so-

called Kapitsa’s pendulum.68 Tuning the frequency can modu-

late the strength of this dynamic stabilization and thereby the

proportion of cells that age through this long-lived state of unsta-

ble equilibrium (Figure 5D).

Temporally varying metabolic interventions, such as intermit-

tent fasting, are attracting increasing attention as a potential

approach to effectively promote longevity and health-

span,32,34,69,70 but definition of mechanisms underlying their

effectiveness remain elusive. Our dynamic stabilization theory

of aging, validated here in yeast, may provide the theoretical un-

derpinning for the effects of temporally varying interventions. As

large-scale intervention testing is prohibitively time and resource

intensive, models based on this theoretical framework can help

screen and identify in silico the optimal dynamic patterns of

metabolic interventions for experimental examinations. Such

model-directed approaches can also be applied to identify

time-based administration regimes for a series of metabolic

intervention compounds named ‘‘CR mimetics’’ (CRMs),

including rapamycin, metformin, and spermidine, shown to in-

crease lifespan in multiple model organisms.71–78

In addition to the two approaches presented here, a third

approach, creating a limit cycle for longevity, was conceived

by attempts tomodify the circuit structure in themodel. Rewiring

the mutual inhibition between Sir2 and HAP into a negative
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feedback loop can replace the detrimental stable fixed points

with a limit cycle on the Sir2-HAP phase plane, leading to sus-

tained oscillations in Sir2 and HAP levels and thereby avoiding

fate commitment to either a low Sir2 or low HAP state. This strat-

egy has been realized by genetic circuit engineering in the cell.26

We acknowledge that our simple model is only focused on the

Sir2-HAP toggle switch and its modulation by glucose. We have

omitted many important aging-related pathways, e.g., TORC1

and autophagy pathways, which play crucial roles in mediating

the effects of CR on lifespan. As a result, our current model

has limitations in reproducing some of the experimental results.

For instance, in our model, Sir2 overexpression at 0.1% glucose

creates a longevity fixed point that should be very hard to escape

from by stochastic simulations (Figure 4D), leading to an

extremely long lifespan. However, in experiments, Sir2 overex-

pression at 0.1% glucose only extended the lifespan to a certain

degree (Figures 4E and 4F). Clearly, additional pathways and

processes not considered in our model are driving cell aging

and death in this mutant. In addition, while our model could pre-

dict the emergence of DS cells upon glucose oscillations

(Figures 5A–5D), it failed to capture or explain several aspects

of the experimental results, including the shortened lifespan of

mode 1 cells (Figure 5F, red curve), the initial increase in rDNA-

GFP in mode 2 cells (Figure 5E, left), and the slow iRFP waves

observed in DS cells (Figure 5E, right). New experimental ap-

proachesmeasuring other related regulatory factors and their in-

teractions with the Sir2-HAP circuit will be needed to obtain

mechanistic insights underlying these results and to improve

our theoretical understanding of aging. In this study, our goal

was to develop a simple theoretical framework that could help

us understand several key observations. It will serve as a starting

point for more comprehensive experimental and theoretical in-

vestigations. When new experimental approaches and data

become available, we will refine and expand our model to

more accurately simulate and predict the aging processes under

varying glucose conditions.

Finally, our model is designed specifically for yeast aging, yet

due to its abstract nature, it may be applied to design interven-

tions for any fate decision processes driven by toggle switch cir-

cuits, such as trophectoderm differentiation by the Oct3/4-Cdx2

circuit,79 induced pluripotent stem cell reprogramming by the

Oct4-Sox2 circuit,80 hematopoietic stem cell differentiation by

the GATA-1 and PU.1 circuit,81 and many others. Future studies

will be focused on identifying major toggle switch circuits that

drive aging in other organisms or in human cells, based on which

we can apply our modeling framework to design and test univer-

sal interventional strategies for promoting longevity.
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NHP6a-iRFP-kanMX, HXK1-GFP::HIS3

This study NH1843

Oligonucleotides

M13@pTEF1: GTAAAACGACGGCCAGTCCA

CACACCATAGCTTCAAAAT

This study Forward primer to PCR TEF1

promoter for making NHB1222

ATPs@pTEF1: ATGAATAGTTTTCATCTTAGA

TTAGATTGCTATGCTTTCT

This study Reverse primer to PCR TEF1

promoter for making NHB1222

pTEF1@ATPs: AATCTAATCTAAGATGAAAAC

TATTCATGTTTCTGTTGTT

This study Forward primer to PCR iATPSnFR1.0

for making NHB1222

M13r@ATP: AAACAGCTATGACTTAATCAAC

TTGCAATTTCATT

This study Reverse primer to PCR iATPSnFR1.0

for making NHB1222

ATP@M13r: TGCAAGTTGATTAAGTCATAGC

TGTTTCCTGTGTG

This study Forward primer to PCR pRS303

plasmid for making NHB1222

pTEF1@M13: ATGGTGTGTGGACTGGCCGT

CGTTTTACAAC

This study Reverse primer to PCR pRS303

plasmid for making NHB1222

303His-I-F: ACGACCATCACACCACTGAA This study Forward primer to check integration

of pTEF1-iATPSnFR1.0 into

genomic HIS3 location

ATP-I-R: CAGCCAATTGCATAGAACCA This study Reverse primer to check integration

of pTEF1-iATPSnFR1.0 into

genomic HIS3 location

BamHI-CggRO-F: CGGGATCCCTGTCGATT

CGATACTAACGCCG

This study Forward primer to PCR CggRO

for making NHB1227

EcoRI-CggRO-R: GGAATTCCGAGCTGTACAA

GTAGCGTTG

This study Reverse primer to PCR CggRO

for making NHB1227

XhoI-pTEF7-CggR-F: CCGCTCGAGGCGTCGT

ACGCTAGGTCGAG

This study Forward primer to PCR pTEF7-CggR

for making NHB1227

EcoRI-pTEF7-CggR-R: GGAATTCTCATTCATC

TCTCAACAACTTTTTGGC

This study Reverse primer to PCR pTEF7-CggR

for making NHB1227

HXT1-t-F: TGATGACCAACCATTTTACAAGAGT

TTGTTTAGCAGGAAA GGTGACGGTGCTGGTTTA

This study Forward primer for tagging Hxt1 with

fluorescence protein, using pKT

series plasmid as template

(Continued on next page)
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HXT1-t-R: ATAAGTCATTAAAATATGCATATTGA

GCTTGTTTAGTTTA TCGATGAATTCGAGCTCG

This study Reverse primer for tagging Hxt1 with

fluorescence protein, using pKT

series plasmid as template

HXT1-S-F: TCAGCTTCCTGGGTTCCAGTATC This study Forward primer to check

HXT1-CFP tagging

HXT1-S-R: TGTTGAAGCAGCAGCGTTGT This study Reverse primer to check

HXT1-CFP tagging

HXT2_tag_F: TGGTAGCTGGATCTCAAAAGAAA

AAAGAGTTTCCGAGGAA GGTGACGGTGCTGGTTTA

This study Forward primer for tagging Hxt2 with

fluorescence protein, using pKT

series plasmid as template

HXT2_tag_R: AGCCTTAAAAAAATCAGTGCTAGT

TTAAGTATAATCTCTTA TCGATGAATTCGAGCTCG

This study Reverse primer for tagging Hxt2 with

fluorescence protein, using pKT

series plasmid as template

HXT2_Seq_F: GGTGTCAAACCATGGAAATCTG This study Forward primer to check HXT2-YFP tagging

HXT2_Seq_R: ACGTCGAGTCCGTAAGATTTGATC This study Reverse primer to check HXT2-YFP tagging

HXT3_tag_F: TGATGACCAGCCATTCTACAAGAAA

ATGTTCGGCAAGAAAGGTGACGGTGCTGGTTTA

This study Forward primer for tagging Hxt3 with

fluorescence protein, using pKT

series plasmid as template

HXT3_tag_R: AATACACTATTATTCAGCACTACGG

TTTAGCGTGAAATTATCGATGAATTCGAGCTCG

This study Reverse primer for tagging Hxt3 with

fluorescence protein, using pKT

series plasmid as template

HXT3_seq_F: TGCTAACTACGATGCTGATG This study Forward primer to check HXT3-mCherry tagging

HXT3_seq_R: ATTGACTAGCACATCGAATC This study Reverse primer to check HXT3-mCherry tagging

HXK1_tag_F: AAGAATTGCCGAAGGTAAGTCTCTTG

GTATCATTGGCGCT-GGTGACGGTGCTGGTTTA

This study Forward primer for tagging Hxk1 with

fluorescence protein, using pKT

series plasmid as template

HXK1_tag_R: GGGAAAAACACATTTATATTTCATTA

CATTTTTTTCATTATCGATGAATTCGAGCTCG

This study Reverse primer for tagging Hxk1 with

fluorescence protein, using pKT

series plasmid as template

HXK1_seq_F: ACGATTGTTCCAGCTGAGGA This study Forward primer to check HXk1-GFP tagging

HXK1_seq_R: AACATAAGGGCATCACTCAT This study Reverse primer to check HXK1-GFP tagging

Recombinant DNA

pRS303-pSIR2-SIR2 Li et al.17 NHB0638

pRS303-pTEF1- iATPSnFR1.0 This study NHB1222

pRS303-TEFmu7-CggR250-CggRO This study NHB1227

Software and algorithms

Model code in Zenodo This study https://doi.org/10.5281/zenodo.11090009

Python 3.11.5 N/A N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nan Hao

(nhao@ucsd.edu).

Materials availability
All the plasmids and yeast strains generated in this study are available upon request.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Zenodo.com and is publicly available as the date of publication. DOIs are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All yeast strain used in this study were generated from the BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0) strain background.

METHOD DETAILS

Strain and plasmid construction
Standard protocols were used for molecular cloning. All yeast strain used in this study were generated from the BY4741 (MATa

his3D1 leu2D0 met15D0 ura3D0) strain background. Details of strains, plasmids, and primers are included in key resources table.

To make the SIR2 2-fold overexpression plasmid, a XbaI_pSIR2_SIR2_EcoRI fragment containing 620 bp of the SIR2 promoter +

the SIR2 ORF was made by PCR and then ligated into pRS303, yielding plasmid NHB0638.

To make the plasmid for the ATP reporter, a DNA fragment containing sequences from iATPSnFR1.0 (including epsilon subunit,

Linkers 1 and 2, GFP sequences)47 was synthesized by IDT with codon optimization for yeast BY4741. Then PCR and Gibson As-

sembly were used to insert the 408bp TEF1 promoter and the iATPSnFR1.0 fragment into pRS303 plasmid, yielding NHB1222.

To make the plasmid for glycolysis (FBP) reporter, pHO_pTEFmut7_CggR_R250A_ble (#124585) and pCggRO-reporter (#124582)

plasmids were purchased from Addgene.50 Then forward primer with BamHI cutting site and reverse primer with EcoRI cutting site

were used to PCR CggRO sequence. Forward primer with XhoI cutting site and reverse primer with EcoRI cutting site were used to

PCR pTEFmut7_CggR_R250A sequences. After that, the two PCR fragments were ligated into pRS303 plasmid cut by XhoI and

BamHI to get the plasmid NHB1227.

The yeast strain with the nuc. iRFP reporter (NH268) and the strain with both nuc. iRFP and the NTS1 silencing reporters (NH270)

was made as previously described.15 The yeast strain with the ATP reporter was made by transforming NH268 with DNA fragments

from NHB1222 digested by BsmI. The yeast strain with Hxt1-CFP, Hxt2-YFP, Hxt3-mCherry reporters was made by the following

steps: firstly, mCherry-LEU2 was amplified by PCR and integrated at the C-terminus of Hxt3 by homologous recombination to

make the Hxt3-mCherry strain; secondly, CFP-HIS3 was amplified by PCR and integrated at the C-terminus of Hxt1 by homologous

recombination to make the Hxt3-mCherry, Hxt1-CFP strain; Lastly, YFP-URA3 was amplified by PCR and integrated at the

C-terminus of Hxt2 by homologous recombination to make the Hxt3-mCherry, Hxt1-CFP, Hxt2-YFP strain. Similarly, the yeast strain

with the Hxk1-GFP reporter wasmade by transforming GFP-HIS3 fragments amplified from PCR. The yeast strain with the glycolysis

reporter was made by transforming NH268 with DNA fragments from NHB1227 digested by BsmI.

Setting up microfluidic experiments and time-lapse microscopy
The microfluidic devices and experiments were set up as previously described.14,15,17,26 The yeast cells were incubated in SC me-

dium containing 2% glucose to an OD600 of 0.8 before loading into the microfluidic devices. SC media containing different concen-

trations of glucose were delivered to cells via the media supply syringes after cell loading and were applied throughout the experi-

ments. A detailed description of microfluidic fabrication was provided in14 and a detailed description of setting up a microfluidics

aging experiment was provided in.15

A computer-controlled electrovalve was used to deliver external glucose oscillations to aging cells in the microfluidic device. The

3-way 0.054 ports electrovalve (The LeeCompany, #LFYA1226032H) was connected to a 4-channel USB powered relaymodule (Nu-

mato Lab, SKU: USBPOWRL004). Each channel of the relay could be programmed to control the media input to one microfluidic

device by custom-designed MATLAB App. To generate glucose oscillations, growth media with 2% glucose and 0.02% glucose

were connected to Port I and O of the electrovalve, respectively, which can be computer-controlled. The outlet port of the valve

was connected to the inlet of the microfluidic device.

Time-lapse microscopy experiments were conducted using a Nikon Ti-E inverted fluorescence microscope with an EMCCD cam-

era (Andor iXon X3 DU897). The light source is a spectra X LED system. Imageswere taken using a CFI plan Apochromat Lambda DM

60X oil immersion objective (NA 1.40WD 0.13MM). In all experiments, the images were acquired for each fluorescence channel every

15min for a total of 90 to 120 hours. The exposure and intensity setting for each channel were set as follows: 1) For the glucose tuning

assay: Phase 80ms, GFP 4ms/30ms at 10% lamp intensity with an EMGain of 70, and iRFP 50ms at 15% lamp intensity with an EM

Gain of 300; 2) For detecting the ATP reporter: Phase 80ms, GFP 30ms at 10% lamp intensity with an EMGain of 70, and iRFP 300ms

at 15% lamp intensity with an EM Gain of 300; 3) For detecting Hxt1-3: Phase 80 ms, mCherry 100ms at 25% lamp intensity with an

EM Gain of 250, YFP 100ms at 10% lamp intensity with an EM Gain of 250, CFP 60ms at 10% lamp intensity with an EM Gain of 250

and iRFP 300ms at 15% lamp intensity with an EM Gain of 100; 4) For detecting the FBP reporter: Phase 50 ms, YFP 200ms at 10%

lamp intensity with an EM Gain of 250, and iRFP 300ms at 15% lamp intensity with an EM Gain of 100.

Quantification of single-cell aging traces
Image processing was conducted using a customMATLAB code.15,17,26 The background of images from each fluorescence channel

were subtracted. Cell nuclei were masked by thresholding iRFP signal. The mean intensity value of the top 40% of the pixels of fluo-

rescence reporters was quantified, as described previously.15,17,26 The time traces of reporters were smoothed using the MATLAB

function smoothdata with specification of the Gaussian method through a 15-element sliding window.

To plot the cell cycle length changes as a function of the percentage of lifetime, the vector of cell cycle length was interpolated to a

new vector of 100 elements at evenly distributed 100 query points. Any cells showing obvious abnormal morphologies upon cell
Cell Systems 15, 738–752.e1–e5, August 21, 2024 e3
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loading were filtered out for replicative lifespan (RLS) analysis. Any cells showing dislocation of reporter mask were filtered out for

time trace analysis but included in RLS analysis. Significant numbers for RLS changes were calculated with Gehan-Breslow-

Wilcoxon test by using Prism GraphPad 7 (GraphPad Software, CA).

Classification of Mode 1 vs Mode 2 cells
For single-cell data in Figures 1 and 2, Mode 1 and Mode 2 aging cells were classified based on the age-dependent changes in their

daughter morphologies, as described in our previous study.17Mode 1 cells produce elongated daughters at the late stage of lifespan,

whereas Mode 2 cells produce small rounded daughters until death (Figure S1). The classification was further confirmed by iRFP

fluorescence (indicating the intracellular heme level). Mode 1 and Mode 2 cells exhibit distinct dynamics of iRFP fluorescence during

aging – the iRFP fluorescence increases toward the late stage of Mode 1 aging; in contrast, iRFP signal sharply decreases at the early

stage of Mode 2 aging and remains extremely low throughout the entire lifespan (Figure S1). These age-dependent changes in iRFP

fluorescence provide robust and quantitative metrics to further confirm the classification of the two aging modes, independent of the

need for specific microfluidic devices or imaging setup.

Determination of the time preceding fate commitment for Mode 1 aging cells
For the analysis shown in Figure 2E, Mode 1 cells showed an abrupt and sustained increase of iRFP signal at the late phase of aging,

indicating the fate commitment to high HAP, low Sir2 state. To quantitatively determine the time for this fate commitment for each

Mode 1 cell, we applied the changepoints detection method described previously (Lavielle et al., 2005; Killick et al., 2012)57,58 to

the iRFP time trace of the cell. The changepoints were calculated with MATLAB findchangept function. In function, the option ‘sta-

tistic’ was specified as ‘std’ and ‘MaxNumChanges’ was set to 1 for the length of trajectory was less than 2500 min and 1+n for n x

1000 min longer. The last change point was recorded if the ‘MaxNumChanges’ was larger than 1. A representative iRFP time trace is

shown to illustrate the change point identified using this method to be 2001 min in Figure 5S. The change point divides the time trace

into two phases: the stable phase (left to the dash line) and the fate commitment phase (right to the dash line). Therefore, this change

point is defined as the time preceding fate commitment for a Mode 1 aging cell. Under 0.1% or 0.02% glucose, a subpopulation of

Mode 1 cells did not show fate commitment with a sustained increase in the iRFP signal and the change point cannot be detected.

Those cells were classified as ‘‘stabilized’’ subpopulation.

Classification of Mode DS cells
For the single-cell time trace data in Figure 5E, the iRFP trajectories were clustered by TSkmeans algorithm with metric of Dynamic

TimeWarping (DTW)82 by catching the main dynamic features of the trajectories. Iterating from 2-10 clusters by Elbowmethod,83 the

optimal number of clusters was determined as 4. Two clusters correspond to Mode 1 and Mode 2 cells, whereas the other two clus-

ters correspond to delayed Mode 1 and delayed Mode 2, which were combined into the DS group (Figure S11). The same analyses

were performed to the experimental results from glucose oscillationswith different frequencies to classify the DS cells (Figures 5E–5G

and S6). The Python packages Tslearn and Yellowbrick were used for clustering and optimal cluster determination, respectively.

Computational Modeling
Stochastic simulations

The stochastic dynamics of aging were studied using the following Langevin equations by adding noise terms to the deterministic

equations:

dS

dt
=

�
b1 +

Sn1

KS
n1+Sn1

�
ðStotalðDÞ � SÞ � ðdS + g1$HÞS+SxS (Equation 5)
dH

dt
=

�
b2 +

Hn2

KH
n2+Hn2

�
ðHtotalðDÞ � HÞ � ðdH + g2$SÞH+HxH (Equation 6)

The noise terms xS, xH are uncorrelated white Gaussian processes with zero mean and autocorrelation CxiðtÞxiðt0ÞD = eidðt � t0Þ; i˛
fH;Sg, where dðt � t0Þ is Dirac’s delta and ei is the magnitude of i.

To simulate the lifetime of each cell, we coupled the saturated-repair stochastic equation described by 59 with Equations 5 and 6. In

Equation 7 below, the rate of damage production rises linearly with time t and damage removal is a saturating function of damage.

Considering that the loss of activity in either Sir2 or HAP leads to cell death,17 we employed the product of Sir2 and HAP saturating

functions to represent damage removal. This allows us to simulate the reduction of damage removal capability when the activity of

either Sir2 or HAP rapidly decreases. The damage removal term was modified with respect to the level of Sir2 and HAP, the equation

is listed as following:

dj

dt
= ht � S2

S2+K1
2

H2

H2+K2
2
j+jxj (Equation 7)
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where h is the maximum production rate of damage, xj is a Gaussian white noise term with strength ej. The cell was defined as dead

when cellular damage j reached the threshold which was set to 5 in our cases. Initial conditions for Sir2 and HAP follow a Gaussian

probability distribution ð2psSsHÞ� 1 exp
h
� ðS�S0Þ2

s2
S

� ðH�H0Þ2
s2
H

i
(see Table S1 for the parameters of simulations).

We tested multiple damage thresholds and confirmed that the relative lifetime curves from simulations are not sensitive to the

choice of the damage threshold (Figure S7), unless the threshold was set to an extremely high level so that most damage trajectories

cannot reach the threshold within the simulation time. We chose the threshold in Figure 3 to best capture the data, but the conclu-

sions of our modeling results do not depend on this choice.

Bifurcation analysis

The fixed points of Equations 1 and 2 were calculated by fsolve from SciPy. Points with negative values were omitted. The eigen-

values of Jacobianmatrix of Equations 1 and 2 at fixed point were calculated to determine its stability. The sweet spot (the third stable

fixed point) was defined as the point that has both negative eigenvalues and lies within the range of 15%-70% of Sir2 and HAP total

amount.

Mode ratio determination

Mode 2was defined asH equals 0 at the end of simulated lifetime.We defined the number of Mode 1 cell equalsN-M2, where theN is

the number of overall cells and M2 is the number of Mode 2 cells. The mode ratio equals N�M2

N .

Parameters fitting

To estimate the parameters for Equations 3 and 4, the randomly generated parameters were recorded until the Manhattan distance

(l1-norm) between simulated mode ratio and experimental mode ratio reached the smallest value for 10 million rounds of simulation

(Figure S6). Moreover, to capture the feature of delayed commitment at 0.1% glucose, the mode ratio at 0.1% glucose was calcu-

lated only when >10% of the total simulated cells were not committed to either mode until >20hrs, otherwise the mode ratio was

defined as infinite. As a result, the probability for not having a longevity fixed point at 0.1% glucose was approximately zero. In other

words, it would be nearly 100% chance for the red line to pass the blue region in Figure 4A; for other glucose concentrations, the

mode ratio was calculated only when <10% of the cells had delayed commitment after 20 hrs.

The robustness of the model

Regarding the robustness of the model, the emergence of the intermediate stable fixed point (the longevity fixed point in this study) is

a well-established, robust feature for the toggle switch network (mutual inhibition + autoregulation).17,61–63 To illustrate that, we

generated 200 groups of parameters for Equations 1 and 2, with random values within a range of 100 folds. For each group of pa-

rameters, we generated 1000 sets of Htotal and Stotal values randomized between 1 to 20 and evaluated the probability for the emer-

gence of the intermediate stable fixed point. We observed that all the parameter groups can generate the stable fixed point with at

least one set of Htotal-Stotal values and there are relatively high chances of generating the stable fixed point in themajority of parameter

groups (Figure S8). In regard to Figure 4A, the existence of the blue triangle (indicating the emergence of the longevity fixed point) on

the Htotal-Stotal plane is robust, whereas the red line (indicating the dependence of Htotal and Stotal on glucose concentration) is sen-

sitive to parameter choices and is constrained by the data.

Mode DS determination

For model simulations, to get the distributions of lifetime of Mode 1 and Mode 2 cells, 20,000 rounds of simulation were conducted

corresponding to the conditions of 0.02% and 2% glucose, respectively. The lifetimes for Mode 1 and Mode 2 were fitted to gamma

distributions separately (Figure S10). The threshold in each mode for defining ‘‘Mode DS’’ was set as Cumulative Distribution Func-

tion (CDF)=95%.

2 3 Sir2 overexpression approximation

When another copy of SIR2 gene was added, total Sir2 capacity was increased by a factor of k. Equation 5 became:

dS

dt
=

�
b1 +

Sn1

KS
n1+Sn1

�
ðkStotalðDÞ � SÞ � ðdS + g1$HÞS+SxS (Equation 8)

Considering Sir2 is nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, overexpression of Sir2 may lead to competitive

binding of NAD+, which reduces the inhibition strength (g2) to HAP. The assumption is in line with our experimental results in which

23 Sir2 in 2% glucose condition exhibited no effect on pushing the cells to Mode 2 (�57% mode 1 of 23 Sir2 vs �50% mode 1 of

WT), indicating a compromise of increase of Sir2 capacity and reduction of Sir2 activity simultaneously. In addition, an extreme over-

expression of Sir2 driven by the strong promoter, pTDH3, leads to almost 100%mode 1 cells. This suggests that Sir2 does not exert

an inhibitory effect on HAP through the loss of Sir2 enzymatic activity, caused by severe competition for NAD+. To this end, we set k

equals 1.2 andg2equals 0.6.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the information regarding quantification and statistical analysis were included in the figure legends.
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